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used, as some of Dljr can be obtained from the others 
by (9) and (10). 

Once all the D~j~ are calculated, the next task is to 
calculate hi, kj, l~ from them. This can be best accom- 
plished by using some of 35 equations of four terms 
each, exemplified by 

x1D234 - x2D134 -]- x3D124 - x4D123 = 0 (13) 

where three independent solutions in x stand in turn 
for h, then k, then l. 

Because there is an ambiguity in the choice of axes 
in a triclinic case, three hkl points can be freely chosen 
subject to one condition (13) and four others can be 
calculated from these. In this way, any one set of 21 
Miller indices can be readily calculated. The one set of 
Miller indices will be one member of the infinite set 
obtainable by unimodular transformations. Again, not 
all the 35 equations (13) need be used, but only enough 
to determine all the Miller indices of the required set. 

Conclusions 

The above mathematics may appear too complex to 
an ordinary powder-diffractionist to be of any practi- 
cal use, but the greatest practical computational problem 
is the solution of equation (5) in integers within ob- 
servational tolerances. Once this equation is solved, 
all the rest of the equations deal in integers, are there- 
fore exact, and are easier to solve than equation 
(5). 

The treatment greatly simplifies when crystal 
systems of higher symmetry are considered. The hexa- 
gonal and tetragonal systems can be solved at once by 
the aid of a simple nomograph, and the solution of the 
orthorhombic system requires only a moderate com- 
putational effort. However, the monoclinic and the 
triclinic case will require the use of a computer. 

This paper was written in connection with informa- 
tion-retrieval studies supported by the Joint Committee 
on Powder Diffraction Standards through the Ameri- 
can Society for Testing and Materials (Pennsylvania 
State University Grant 2212). Moral encouragement 
as well as financial support is gratefully acknowledged. 
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A general theory of grain and phase boundaries (the O-lattice theory) is further developed and tested 
on alkali feldspars with exsolution lamellae, since measurements exist for the structures of the two-phase 
system (perthitic feldspars) as well as for the orientation of the phase boundary. It is shown that in this 
case the adaptation of two monoclinic structures is energetically preferable to the adaptation of a mono- 
clinic and a triclinic one. The phase boundary energy is markedly lower in the former case. Thus, a 
pseudo-monoclinic structure is produced out of the triclinic by periodic submicroscopic twinning. The 
calculated orientation of the phase boundary is in close agreement with the measurements. 

Introduction 

Since most materials are polycrystalline, the impor- 
tance of the study of crystal interfaces does not need 
to be emphasized. One usually distinguishes between 

subgrain boundaries consisting of distinct dislocation 
networks and high-angle boundaries where a disloca- 
tion density would be so high that the dislocation cores 
would merge so that at first sight a boundary might 
appear as a highly disturbed interface. A distinction 
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is also made between boundaries of the same material 
(grain boundaries) and of different materials (phase 
boundaries). 

The theory of subgrain boundaries was developed 
by Read and Shockley (Read, 1963) with the accent on 
energy and by Frank (1950) more from the point of 
view of geometry. A review on subgrain boundaries is 
given by Amelinckx & Dekeyser (1959). Bollmann 
(1962, 1964) gave a dualistic formulation of the geom- 
etry of subgrain boundaries. 

The study of the geometry of high-angle boundaries 
was initiated by Frank (1958) and further developed 
among others by Brandon (1966) and Ranganathan 
(1966) based on the concept of the coincidence site 
lattice. Bollmann (1967) gave a general formalism (the 
O-lattice theory) which can be applied to all kinds of 
grain and phase boundaries and includes the disloca- 
tion networks as well as the coincidence site lattice. 

The present paper is considered on one hand as a 
further development of the O-lattice theory by in- 
troducing a criterion for an 'optimal' boundary and 
on the other hand as a numerical test on a monoclinic- 
triclinic system for which relevant data for the crystal 
structure as well as the boundary orientation are avail- 
able. A short introduction to the general theory will 
be given. However, a full understanding will not be 
possible without familiarity with the above mentioned 
basic paper. 

The mineralogical problem 

The orientation relations in exsolution lamellae of 
perthite and moonstone have been selected as an ap- 
plication of the theory of phase boundaries to minerals. 
Perthites and moonstones (cryptoperthites) are a mi- 
croscopic or submicroscopic association of units of 
albite, NaA1Si308 and K-feldspar, KA1Si308 ( c f  
Alling, 1932; Laves & Soldatos, 1963). The Na-feld- 
spar phase, which may amount to over 50%, is ex- 
solved in moonstone as parallel lamellae with a periodi- 
city of about 1000 A~ producing Bragg diffraction 
phenomena ('Schiller' or opalescence) in the wavelength 
range of visible light (Fleet & Ribbe, 1963; Nissen & 
Bollmann, 1966)(Fig. 1). 

The lattice constants of feldspar phases in moon- 
stones must be regarded as slightly abnormal owing to 
adaptations near the exsolution boundaries (Laves, 
1952). The measurement of lattice constants in moon- 
stones is also made difficult by the considerable 
changes in Na content of the K-feldspar and Ca con- 
tent of the Na-feldspar phases in different materials as 
well as in the same specimen. In order to calculate 
optimal phase boundaries, the lattice constants of the 
two phases in a moonstone were therefore 'simulated' 
by using lattice constants of single phases. 

To date three kinds of moonstone have been de- 
scribed: 

I. Monoclinic or very nearly monoclinic K-feldspar 
with a low amount of Na is exsolved against nearly 

II. 

III. 

equal amounts of low albite submicroscopically 
twinned after the albite law (twin axis b*) (Laves, 
1952; Fleet & Ribbe, 1963; Nissen & Bollmann, 
1966). This type occurs in slowly cooled plutonites 
(charnockitic rocks, larvikites). These materials 
may also contain small areas either with twin- 
ning after the pericline law or with both albite 
and pericline twinning (MacKenzie & Smith, 1954). 
Sanidine with varying Na content has exsolved high 
albite (Laves, 1952; MacKenzie & Smith, 1955) 
which is submicroscopically twinned after the 
pericline law (twin axis b). In this type, we have 
succeeded in finding the twinning domains in 
electron transmission micrographs. 
Adularia with submicroscopic 'cryptomicrocline' 
texture (cf. McConnel, 1965) has exsolved albite 
which is submicroscopically twinned after a com- 
bination of the albite and pericline laws (Nissen, 
1967. See also Smith & MacKenzie, 1954, 1955; 
MacKenzie & Smith, 1955; Smith 1961). 

The following calculations have been made only for 
type I. When without the submicroscopic twinning and 
with exsolved areas which are of at least microscopic 
dimensions it corresponds to type I of ordinary per- 
thites (Laves & Soldatos, 1963), which form a large 
portion of granitic and gneiss rocks. The lattice con- 
stants assumed for this moonstone must be considered 
as a model and are, in the natural state, subject to 
small changes due to variations in Na content, distor- 
tion of unit cells near phase boundaries, errors of 
measurement, etc. The lattice constants of 'orthoclase' 
from Mogok, Burma (Cole, Serum & Kennard, 1949) 
with 8 mol% albite component were taken as the K- 
feldspar phase and those for low albite from Kodarma, 
Finland (Cole, Serum & Taylor, 1951) as the Na-feld- 
spar phase. [Similar lattice constants were also given 
e.g. by Orville (1967)]. 

The full description of the orientation relations along 
a phase or grain boundary comprises two kinds of data: 
(1) The relative orientation of the two lattices and (2) 
the orientation of the phase boundary with respect to 
the two lattices. Among others, Des Cloizeaux (1862, 
1876), Br/Sgger (1890) and Boggild (1924) measured the 
angles between the 'lamellae' acting as a diffraction 
grating and the cleavage. Once the relation between 
these hypothetical lamellae and cryptoperthitic un- 
mixing was suggested (Br6gger, 1890; K6zu & End6, 
1921; Hadding, 1921]-) the index of the mean phase 
boundary was determined optically for moonstones, 
taken from 12 localities, to vary approximately be- 
tween (801) and (601) (Boggild, 1924), i.e. to be gener- 
ally non-rational. Nearly the same boundary faces 
were found by Boggild in some perthites. A similar phase 
boundary ofexsolved Na-feldspar in perthites and moon- 
stone was described by Schr6der (1965) and Michaelis 
de S~ienz (1965), and Mfikinen (1917) reported (-601) 

"~" T h e  la t ter  papers  escaped  the  a t t e n t i o n  of  Boggi ld .  

A C 24A - 5* 
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Fig. 1. Cryptoperthite in larvikite (specimen 'Spencer R'). Lamellae of Na-feidspar twinned after the albite law in monoclinic 

(untwinned) K-feldspar. (Note the relation between the width of the Na-feldspar lamellae and the width of the twin units.) 
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to (801) planes as parting planes of 'murchisonite', a 
variety of perthite with a non-rational cleavage plane. 
The relative orientation of the two feldpar lattices was 
determinded for the first time also by Boggild (1924). 
He measured a deviation of 55' for the a axes and cal- 
culated a deviation of 19' for the c axes. Laves & Sol- 
datos (1963), using the precession method, corrobora- 
ted these data. 

When comparing the angles between the (001) 
cleavages of albite and of K-feldspar and the phase 
boundary in perthites (found to be parallel to the 
Schiller 'reflexion' plane in moonstone) Boggild found: 
' . . .  a very near coincidence, and the values will show, 
furthermore, that if we go to other faces in the same 
zone the differences between the two series [i.e. of ad- 
jacent indices in the two phases] will be larger in both 
directions . . . ' .  Laves (1952, p. 562-567), using the 
precession method, measured 60' difference between the 
a axes and 35' between the c axes of albite and K-feldspar 
in type I moonstones. He found the same relation 
between the orientation of the two lattices and the 
phase boundary in type I moonstone as Beggild had 
described for perthites. 

Chao & Taylor (1940) found submicroscopic 
twinning of the Na-feldspar phase as the correct 
interpretation of additional reflexions which were also 
treated later by Raman, Jayaraman & Srinivasan 
(1950), Jayaraman (1959) and Ito & Sadanaga (1951) 
but partly explained in other ways. Laves (1952) 
showed that in type I moonstone these additional re- 
flexions are elongated in [b*] and are produced by al- 
bite twinning; in type II moonstone they are elongated 
in directions between about [106] and [108] and corre- 
spond to pericline twinning. He identified the exsolved 
phase in type II moonstone as high albite. He also de- 
scribed a type I moonstone showing a twinning super- 
structure with a sixfold b-axis repeat, while Saalfeld 
(1952) found an eightfold repeat and Fleet & Ribbe 
(1963) a fourfold repeat. Laves wrote that: ' . . .  as a 
result of variability of strain r e l a t i o n s . . . '  several values 
were found as an average. This can be directly seen 
from the variability in the thickness of twin units in Fig. 1. 

The O-lattice 

We give here a brief description of the essential points 
of the O-lattice theory. In order to determine a bound- 
ary between two crystals, the structure and relative 
orientation of the two crystals as well as the orienta- 
tion of the boundary have to be taken into account. We 
refer here to translation lattices and in more compli- 
cated structures only to the geometry of the unit cell. 
In order to determine the boundary we interpret the 
two crystals as interpenetrating lattices. Then, within 
the interpenetrating lattices, a boundary will be placed 
through points where both lattices match best. Once 
the boundary is chosen, only one lattice on each side 
is considered as real, so that now two different real 
crystals are separated by the boundary. The points 

where the two interpenetrating lattices fit best consti- 
tute the O-lattice. 

When the two lattices (1 and 2) are given, we relate 
them by a linear non-degenerate transformation which 
in general is homogeneous: 

x (2L) = A x  (1L), IAI ¢ 0 .  (1) 

We choose lattice 1 as our basic coordinate system so 
that all values of x(1) with integer coordinates are lattice 
points (marked by the index L). In this case the origin 
of the transformation is a lattice point. According to 
(1) every lattice point in lattice 1 has a partner in 
lattice 2. 

Now, lattice 1 can be imaged on to the same lattice 
2 by means of the same transformation A, but starting 
from other origins. The pairing of lattice points will be 
different. We define the O-lattice as the lattice o f  all 
these possible origins. It is determined as the solutions 
of the equation 

b~L) = (I -- A-1)x(°) (2) 

I = unit transformation (identity) 
x(o) = O-point 
b(L) =translat ion vector of lattice 1. 

Instead of dealing with the translation vectors of 
lattice 1 (i.e. difference vectors between lattice points), 
we may imagine that all these translation vectors are 
taken out of lattice 1 and that they are translated so 
that they start at a common origin. In this way we 
reconstruct lattice 1 in structure and orientation and 
we call this lattice (of all translation vectors of lattice 1) 
the b-lattice and consider (2) as an imaging relation 
between the O- and b-lattice. Hence ba,) means a 
lattice vector of the b-lattice. 

If the determinant 

I I - A - 1 I # 0 ,  (3) 

the O-lattice is given by 

X (0) = ( I - A - 1 ) - l b  (L) . (4) 

Since we refer to lattice 1 as the basic coordinate sys- 
tem, the b(L) vectors have integer coordinates and the 
unit cell of the O-lattice, as image of the unit cell of 
the b-lattice, is given by the column vectors of the 
matrix ( I - A - l )  -x. These column vectors may also be 
expressed in orthogonal coordinates for easier plotting 
and quantitative evaluation. There are two limiting 
cases in the O-lattice theory: 

The first one occurs when the unit cell of the O- 
lattice is large compared with the one of the crystal 
lattice or the b-lattice respectively. In this case the 
boundary is formed by a dislocation network. 

In the second limiting case the O-lattice unit cell is 
about the size of the unit cell of the b-lattice. Here the 
periodicity of the pattern of lattice points plays the 
crucial part (coincidence site lattice). 

In our present study we are dealing only with the 
first case, i.e. with dislocation networks. 
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Characteristics of an optimal boundary 

If there is a choice between different transformations 
(A, A' . . . )  for relating the two lattices, the transfor- 
mation which relates the nearest neighbours is the one 
which produces the largest O-lattice and thus is the 
one with the smallest absolute value of the determinant 
II-A-11. 

On the other hand, if we have a transformation 
which already relates the nearest neighbours and vary 
it by changing the relative orientation of the two 
lattices, the orientation with the smallest determinant 
is not always the one corresponding to the optimal 
boundary. 

The determinan! II-A-11 can become zero and 
change sign. The case of the zero determinant will be 
discussed below, but it can be said here that the O- 
lattice degenerates into a lattice consisting of parallel 
lines, i.e. the unit cell ot the O-lattice becomes infinite. 

The determinant II-A-11 is a volume measure and 
is the volume ratio of the b- to the O-lattice unit cell. 
However, for a boundary we need a measure for a sur- 
face. The best measure would be the energy per unit 
boundary surface but it is unknown in most cases. 
As we are dealing with the geometry of grain boundaries 
we introduce here a geometrical parameter, which 
gives some indication of the boundary energy. If the 
boundary consists of a row of parallel dislocation 
lines (spacing d, Burgers vector b), the surface energy 
E i s  

E= EoO(K- lnO) with O=b/d (5) 

(Read, 1953). E0 and K are material constants. E(O) in- 
creases from the value E =  0 for 0=  0 to a maximum 
for 0 between 15 ° and 25 o and decreases slightly after- 
wards. As soon as the dislocation density becomes too 
high, equation (5) looses its validity. This equation is 
also true for all kinds of low angle boundaries but 
with different constants E0 and K. 

As long as we restrict ourselves to locating a mini- 
mum of the surface energy without expecting numeri- 
cal values of the energy, we can use a parameter with 
the only property of increasing monotonically with 
the surface energy, in the range of interest. 

For a boundary consisting of two sets of parallel 
dislocations we choose as parameter 

P= (b~/d~) 2 + (b:/dz) 2 (6) 

P is expected to be a valid indication as long as the 
spacing of the O points is large compared with the 
crystal lattice spacings, which is the case in our prob- 
lem. 

Selecting as possible boundaries the three faces of 
the O-lattice unit cell, the corresponding geometrical 
parameters are: 

P 1 = (Ix~°)l " Ib<3L)l)2 q- ([x<s°)l " Ib~L)l)2 
...... IxlOS- x x(s0)[- 2 .... (7) 

P2 and P3 are obtained by cyclic permutation of the 
indices. These parameters follow from the relation 
between the O-lattice, the b-lattice and the correspon- 
ding dislocation network as indicated elsewhere (Boll- 
mann, 1962, 1964, 1967, p. 384). They are only justified 
if the boundary is a dislocation network which is the 
case in the present study (see e.g. Fig. 5). 

The optimal boundary is obtained for the mini- 
mum value of the smallest of the parameters P1, P2 
and P3. 

Transformation A 

The lattice constants a, b, c, ~, t ,  ~ of both structures 
are given. We start with an orthogonal coordinate 
system in A (unit vectors u~ °rth)) in which the unit vec- 
tors of the crystal structures u~ ° are expressed.* 

u(J)=(S<J))u< °rth) j =  1, 2 .  (8) 

We place the a axis into the x axis and the ac plane 
into the xz plane.]" The coefficients can be determined 
by using the scalar products of the u~'. The matrix S 
which is the transposed matrix of S ,  in (8), the column 
vectors of which are the unit vectors of the crystal 
coordinate system (a,b,c) expressed in the orthogonal 
coordinates, becomes: 

a all  = a  
Szl = 0  
$31 = 0  

b $12 = b .  cos ), 
S22=(b/sin t )  (sin 2 t - c o s  2 c~- cos 2 

+cos  c~ cos fl cos ),)1/2 (9) 
$32= (b/sin t )  (cos a - c o s  ft .  cos ?,) 

c $13 = c .  cos/~ 
Sz3 = 0  
S33=c. sin fl J 

This is done for both structures. The second structure 
is then rotated independently around the x, y and z 
axes by a few degrees. Since the angles of rotation ~0~ 
are small we use the approximation sin ~0 ~_ ~0, cos ~0_ 1. 
Hence the right-hand rotation around the x axis is 

(i0 0) Rx= - ~ z  (10) 
(0x 

and similarly for the rotations Ry and Rz around the 
y and the z axes (by cyclic permutation of the indices). 

We start with an orthogonal lattice and transform 
it into the structure 1 : 

X (1) = S ( 1 ) x  ( ° r t h )  . (11) 

In accordance with this we produce structure 2: 

x(2) = RzRyRxS (2)x (orth) . ( 1 2 )  

* A good introduction to practical matrix calculation is 
given by Wayman (1964). 

t It would have been preferable with regard to mineralogical 
conventions to place the c axis into the z axis. 

~: The transpose of a general matrix M is indicated by M. 
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By eliminating x(orth) we obtain 

x (2) = RzRyRxS(z)(s(1))- lx  (1)" = A(°rth)x(1) . (13) 

Here the whole equation is expressed in orthogonal 
coordinates. 

In order to express it in the coordinate system of 
lattice 1 we have to transform A (°rth) by 

A0) = (S(l))- lA(orth)S (1) , (14) 

i.e. x(2) =(S(1))-IRzRyRxS(2)x (1)" =A(~)x(~) . (15) 

Now we form (A(1)) -1 which is: 

(A(1)) -1 = (S(2)) - lRx 1 R y I R z  IS (1) (16) 
and 

( I - - (A(1) ) - I )  = ( I -  (S(2) ) - lRx 1R~-1Rz iS( l ) ) .  (17) 

For the rotations, which are orthogonal transforma- 
tions, 

R - I = R .  (18) 

From here on the determinant [ I -A- I I  and the inverse 
matrix ( I -A-X) -~ are calculated. The column vectors 
of this matrix are the unit vectors of the O-lattice in the 
coordinate system of lattice 1 (where the b-unit vec- 
tors are of the type (1,0,0)).  

If we place the possible boundaries through the 
faces of the O-lattice unit cell we obtain the Miller 
indices of these planes (i.e. normal vectors in the recip- 
rocal lattice of the crystal coordinate system) as vec- 
tor product of the O-lattice unit vectors 

nl = [x(2 °) x x~°)] , etc. (19) 

In order to calculate the geometrical parameters (7) 
we transform the O-lattice unit vectors, as well as those 
of the b-lattice back into the orthogonal coordinate 
system by 

x~O'°rth) = S(1)X} O) (20) 

and similarly the b-vectors. 

Organization of the calculation 

The computer calculation is divided into two inde- 
pendent programs. 

Program 1 

Program 1 allows mapping of [I-A-1[ ,  P1, P2 and 
P3 (7) as a function of the angles of rotation q~z, ~0u, ~0z. 
It consists essentially of the following steps. 

(a) Input:  a, b, c, e, fl, ), of the two lattices. 
(b) Calculation of S(1) and St 2) (9) and their determi- 

nants. 
(c) det S(Z)/det Sta)= volume ratio of the two unit cells. 
(d) Input:  ~0-start, A~p and the number of steps for the 

3 angles. 
(e) Calculation of A -1, ( I - A - l ) ,  [ I -A- I [  and 

( I - A - l )  -1 in coordinates of lattice 1. 

(f)  Column vectors of ( I -A-a)-~,  i.e. the unit vectors 
of the O-lattice and the corresponding b-vectors 
are transformed to orthogonal coordinates (20). 

(g) P1, P2 and P3 are calculated (7). 

The program prints the following results: 

S (1), det S(1), S (2), det S (2), det S(2)/det St 1) . 

As a table are given 

cpz, cpu, Cpz, det ( I - A - l ) ,  P1, P2, P 3 .  

Maps are plotted of the different parameters from 
these tables, and from these maps specific values of the 
rotation angles cp are determined, for which the actual 
O-lattice is calculated This calculation is done in pro- 
gram 2. Before discussing this latter program we have 
to investigate the situation which arises when the 
determinant [ I -A-a[  becomes zero. 

Situation when [ I -  A-1I = 0 

When the determinant II-A-11 is zero with the ma- 
trix acquiring rank 2, equation (2), which is a set of 
inhomogeneous linear equations, has solutions only 
for b-lattice points within a plane through the origin 
of the b-space. This plane is given by a linear relation 
between the values of b~ L), b~ L) and b~ L) which makes 
the system of equation (2) soluble. We call this plane 
the b-subspace. 

The transformation A in this case has an invariant 
axis, i.e. an eigenvector with the eigenvalue 1. The 
O-lattice degenerates into a line lattice with lines paral- 
lel to that eigenvector. Every point on these lines is an 
O-point, i.e. a solution of equation (2). We call an 
O-line, as element of the O-lattice, an O-element. 
Hence, by calculating the eigenvalues of A and the 
eigenvector for an eigenvalue close enough to 1, the 
orientation of the O-line within the interpenetrating 
lattices is given. 

Once the orientation of the O-lines is known, their 
position has to be determined. Here the situation be- 
comes more delicate. As mentioned above every b- 
lattice point lying within the b-subspace has an O- 
element as image. If the b-subspace lies arbitrarily 
within the b-lattice, only a few b-lattice points or even 
none at all may lie within that subspace. In terms of a 
dislocation network this would mean a boundary 
consisting of very few dislocations, each with an im- 
mense Burgers vector. Nature does not behave like 
this. In order to describe the real situation we have to 
widen the frame of the allowed transformations A so 
as to include also inhomogeneous transformations, i.e. 
those containing a translation. In this case the lattice 
points of the b-lattice in the near surroundings of the 
b-subspace can be projected perpendicularly on to the 
b-subspace* and the images of these projected points 

* In the earlier paper (Bollmann, 1967) it was stated that 
the projection has to be done along the O-line. It has been 
found meanwhile that this procedure can lead to physically 
unstable situations. 
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determine the position of the O-elements. The transfor- (h) 
mation then consists of a homogeneous part plus a 
translation by the amount and direction of the projec- 
tion of the b-lattice point on to the b-subspace. Hence, (i) 
for all the O-elements the homogeneous part is the 
same but the translation differs from one O-element to 
another. 

Program 2 
(a) Input: matrices S(~) and S(2) calculated in program 

1. 
(b) Calculation of the metric tensor G of lattice 

1. G=~O)S (1). 
(c) Calculation of G -1. 
(d) Calculation of basis vectors of the reciprocal 

lattice. 

b x c  
a* = - etc. 

a .  [b x c] ' 

(e) Input: ~0x, ~0u, ~pz. 
(f)  Calculation of A, ( I - A  -1) and ( I - A - a )  -1. 
(g) Calculation of eigenvalues 2 of A, i.e. IA-2I[  =0. 

% 

10 
- 3  - 2  I ,, 

__:__ 
2 

__i 
-1 0 1 2 3 ~x 

Fig.2. Surface [I-A-1[=0 as a function of the angles of 
rotation tpx, tpv, q~z (in degrees). Inside this 'hyperboloid' the 
determinant is positive, outside it is negative. 

Calculation of eigenvectors x(e), (A-2I)x(e)=O, 
normalization to unit length and expression in 
lattice 1 and in orthogonal coordinates. 
If the eigenvalue is close enough to 1 the normal 
to the b-subspace is calculated, normalized to unit 
length and expressed in coordinates of lattice 1 as 
well as in orthogonal coordinates. 

The normal on the b-subspace b (n) can be cal- 
culated in the following way: let us consider (2) 
as a general relation between the x- and the b- 
space: 

( I - A - 0 x  : = T x = b .  (21) 

Every vector x has its image in the b-subspace. 
Hence we choose two unit vectors x[100] and 
x[010]. Their images are b(TmT21,T31) and 
b(T12, T22, T3z). The vector product of these two 
vectors gives the coordinates of b (n) in the reci- 
procal lattice. The absolute length of b (n) can be 
determined by means of the inverse of the metric 
tensor 

Ib(n) l 2 =b(n)G-lb(n). (22) 

After normalizing the vector it is transformed to 
the coordinate system of lattice 1 by 

b(n-l) = G-lb(n) , (23) 

and to the orthogonal coordinate system by 

b (n-°rth) = S(1)b (n-l) . (24) 

(j) Calculation of the angle ~ between the normalized 
eigenvector x(e) and b (n-l) by: 

cos ~ = ~  (e)Gb(n-1) . (25) 

(k) The b-unit vectors [1,0,0] and [0,0,1] are projected 
on to the b-subspace along the direction of b (n-a) 
in the coordinate system of lattice 1. We call 
these projected vectors b (Lp). These unit vectors 
were chosen because it was found that the orienta- 
tion of the b-subspace was nearest to the (010) 
plane. 

(1) Now, the b-subspace with these projected unit 
vectors is rotated into the (ac) or (xz) plane re- 
spectively (so that b (n) coincides with the y axis). 
( I - A - 0  is transformed correspondingly, then the 
y-components (second column and second line) 
are dropped so that ( I - A - 0  becomes a two- 
dimensional transformation. 

Structure 

Monoclinic } 
'Orthoclase' 
Or 92 
Lattice 1 

Triclinic [ 
Low albite 
Kodarma [ 
Lattice 2 

Table 1. Lattice constants of  the monoclinic and triclinic phases 
a b c ~ fl 

(h) (A) (h) 

8.561(6) 12.996(2) 7"193(4) 90 ° 116 ° 1' 90 ° 

8"135(3) 12.788(3) 7.154(2) 94014 ' 116°31 ' 87o43 " 
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(m) With this two-dimensional t ransformat ion the 
points where the O-lines cross the x z  plane are 
obtained by:  

x (°) = ( I -  A-1)-lb(Lp) . (26) 

(n) A further rotat ion brings the O-lines (i.e. x(e)) par- 
allel to the y axis, so that  their arrangement  can 
be plotted. 

Results 

First we consider the adapta t ion of the monoclinic 
and the triclinic system and then that  of two mono-  
clinic systems. 

Monocl in ic - t r ic l in ic  

The calculation is based on the lattice constants 
given in Table 1 for the two materials, taken from 
Cole, Sorum & Kennard  (1949) (lattice 1) and Cole, 
Sorum & Taylor  (1951) (lattice 2). 

As the differences of  the two lattices are too small 
for a drawing, we give here the matrices S(~) and S(z) 
the column vectors of which are the vectors a, b and c 
an the orthogonal  coordinate system and as such can 
be plotted. The units are given in A. 

a(X) b(l) C(1) 

and 

(!,6, 0 0'"'1 S (1) = 12"996 (27) 
0 6.465] 

a(2) b(2) c(2) 

( i ' 135  0.510 - "210] 
S (z) = 12"751 3 (28) 

-0"821 6"393] 

Fig. 2 shows the surface I I -A-1[  = 0  as a function of 
~px, ~Pu and (oz. Outside this 'hyperboloid '  the determi- 
nant  is negative, inside it is positive. A negative deter- 
minant  means a change from the right-hand b-coordi- 
nate system to a left-hand O-coordinate system and, 
as already mentioned,  a zero determinant  indicates a 
degeneration of  the O-lattice into a line lattice. 

Fig. 3 shows two surfaces of constant  value of the 
lowest of the geometrical parameters,  which in this 
case is P1. The impor tant  feature is that  two separate 
minima exist, i.e. two different relative orientations of 
the crystals with an optimal boundary.  The deviations 
f rom the starting orientation [definition of matrices 
S(1) and S(2), equations 9, (27), (28)] are 

The positions of vectors a(Z), b (2) and c(z) for the two 
opt ima are given as matrices: 

Opt imum 1 a( z)' b (2)' c (2)' 

R 'S(2)  = 

and for 

8"135 0.044 - 3.262' l 
0"320 12"76 0.060 / 
0.036 - 0.935 6.367] 

(29) 

Opt imum 2 a (2)'' b (2)'' e(2) ' '  

8.135 0.106 -2 .956~ 
R " S (  z )= 0.236 12-804 -0 .491  / , (30) 

- 0.323 - 0.229 6.520] 

with R' and R"  representing the corresponding rota- 
tions by ~0' and ~0" respectively f rom the starting posi- 
tion (28). In order to see the relative orientation of the 

I 

% 
3-- I 

2-- / ~  

1-- Sj/££££ i 
0- 

-I- ~ 
~, I I I 

-3 

-1 0 1 2 3 ~x 

Fig.3. Geometr ica l  pa ramete r  P1 as a funct ion of  the angles 
of  rotat ion.  The outer  connec ted  surface cor responds  to 
P1 = 3 3  x 10 -4, the inner disconnected one to P1 = 2 8  x 10-4. 
Hence  two separate  minima of  P1 exist. 

Opt imum 1 (0' 
Opt imum 2 (p" 
Difference ~0" - ~o' = A 

(Px ~Ou ~p; P1 
2"125 ° -0"529  ° -0"464  ° 26"176 x 10 -4 
1"660 ° 2"757 ° 2"276 ° 26"925 × 10 -4 

-- 0"465 ° 3"286 ° 2"740 ° 3"5% 

4.3 o 
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two phases (29) or (30) can be plotted together with 
(27). 

The values of P1 are nearly the same, which means 
that within the frame of the approximation used both 
minima have practically the same energy. Both minima 
lie very close to, but according to the calculation defi- 
nitely not on, the surface of I I -A- I [  =0. The difference 
(optimum point to the nearest point on the surface) is: 

Optimum 1 ( 0.003 ° , -0 .017 ° , -0 .010 °) 
Optimum 2 ( -0 .025 °, 0-067 °, 0.049°). 

Both optima have positive II-A-1],  i.e. they lie inside 
the surface shown in Fig. 2. The unit cells of the opti- 
mum O-lattices are very elongated owing to their 
closeness to the zero determinant surface. They are 
(in orthogonal coordinates): 

Optimum 1 x~°~=( - 4697, -2659,  2371)/~ 
xC2°~=( 16966, 9830, -9024) /~  
xC3 °~ = ( - 10513, - 6263, 5466) A 

Optimum 2 x~ °~ = ( -  1290, 2837, 3598) A 
x~2°)=( - 1412, 3304, -4506)  A 
x(3 °~ = ( 896, - 2192, 2643)/~ 

The plane indices of the optimum boundaries (i.e. the 
coordinates of the plane normals in the reciprocal 
lattice) are: 

Optimum 1 (3.51 -4.01 1.52) 
Optimum 2 (1.38 0.62 -0.61)  

We see that in both cases these indices are completely 
different from the measured indices (Boggild, 1924) 
which lie between (60]') and (80T). 

Monoclinic-monoclinic 
We further consider the case of the adaption of two 

monoclinic systems. As Laves (1952) has shown, a 
pseudo-monoclinic system can be produced out of a 
triclinic by averaging over periodic twinning. Two 
kinds of twinning are known which permit this transi- 
tion: 

1. Tw&ning after the albite law with rotation by 180 o 
around a twin axis in the b* direction. 

2. Twinning after the pericline law with the same rota- 
tion around an axis in the b direction. 

In case 1, the a and c components of the b vector are 
set to 0, i.e. 

(2 )  _ ~ , ( 2 )  = 0 (31) 
12  - -  ~ ' 3 2  

In case 2, the column vectors of the matrix S(z) have to 
be rotated so that the b-vector coincides with the y axis 
(rotation R): 

R .  S(2) = S ¢2)' . ( 3 2 )  

Then the b components of the vectors a and e are set 
to 0. 

Sa)' _ ~a r  = 0 (33) 21  - -  J ' J 2 3  

Fig. 4(a) shows a surface of constant value of the deter- 
minant [I-A-11 for albite twinning (the diagram is 
similar to that for pericline twinning) and Fig. 4(b) 
gives the corresponding diagram of the parameter P1. 
The interesting features are: 

1. The determinant is always negative, i.e. never be- 
comes zero. 

2. The minimum of the absolute value of the deter- 
minant and the minimum of the lowest parameter, 
which here is P 1, coincide for both kinds of twinning 
at the angular coordinate ~0(0 o, 0.93 °(56'), 0 o). 

3. The values of P1 are" 

Albite twinning P1 = 3.94 x 10 -4 
Pericline twinning P1 =3.27 x 10 .4 

The values of the minimum determinant are: 

Albite twinning II-A-11 = - 5 . 7  x 10 -6 
Pericline twinning [I-A-11 = - 7 . 5  x 10 -6. 

The determinant II-A-11 is the inverse of the ratio: 
volume of O-lattice unit cell to volume of b-lattice 
unit cell. Therefore the O-lattice unit cell for albite 
twinning contains 175000 unit cells of the b-lattice (or 
lattice 1). For the pericline twinning this number is 
133000. 

The orientation of the phase boundary measured by 
Boggild (1924) was reported to lie between the (60]') 
and (80]') orientations, i.e. both h2 components are 0. 
These orientations correspond to an inclination of the 
plane normal with respect to the x axis in the (x,z) 
plane for 

(60T) 14o28 ' 
(80T) 17 49 
Average 16 8.5 
Deviation + 1 40 

The calculated orientations are for the 

Albite optimum 21 o 0-5' 
Deviation from measured average 4 52 
Pericline optimum 20 42 
Deviation 4 33.5 

Fig. 5 shows the details of the O-lattice, the corre- 
sponding b-lattice and the dislocation network of the 
optimal boundary for the pericline case. The albite 
case would be essentially the same but with somewhat 
different proportions. Fig. 6 shows a comparison of 
the optimum O-lattices for both kinds of twinning and 
the deviation of the calculated boundary orientation 
from the measured one. 

Laves (1952) determined the directions in the (010) 
plane for which the angular deviation of the two 
joined phases is zero. The directions are close to [301] 
and [106]. Smith (1961) showed that these directions 
coincide with the maximum and minimum of the dila- 
tational distortion. The direction of minimum dilata- 
tional distortion [106] lies in the plane of the phase 
boundary while [301] is perpendicular to it. 
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Mathematical ly  expressed these directions must  be 
eigenvectors of  the opt imum t ransformat ion  A(opt), 
i .e .  solutions of  the equations 

A(°pt)x ---- JLiX 

with the eigenvalues ;Li(i = 1,2, 3). The calculated eigen- 
values for the albite average opt imum are:  

21 =0"944, 2z=0 '980,  23 =0"996 .  

The calculated orientations of  the eigenvectors in the 
a c  plane are:  [2.56,0,1] (measured [3,0,1]) and 
[1,0,11.8] (measured [1,0,6]). 

Fig. 7 shows a comparison between the measured 
and the calculated eigenvectors as well as between 
the corresponding boundary  normals.  We see tha t  the 
calculated values differ f rom the measured ones but  
that  the calculated eigenvector close to [106] coincides 
with the calculated boundary  plane, while the calcu- 

i 

( P y  

, o I %  
(a) 

-1 o i ~x 
(b) 

Fig. 4 (a) Surfaces of constant value of the determinant l I-A-11 for the albite average. Outer surface det = - 2  x 10-5. Inner surface 
det= -0.85 x 10-5. (b) Surfaces of constant value of the geometrical parameter P1 of the albite average. Outer surface P1 = 
91 x 0-4. Inner surface P1 =6 x 10-4. For the pericline average the corresponding pictures are of the same type. 
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Fig. 5. O-lattice and dislocation network in the boundary for the pericline average. The case of the albite average is similar 
with somewhat different proportions. 



W. B O L L M A N N  AND H.-U.  N I S S E N  555 

lated eigenvector close to [301] stays nearly perpendi- 
cular to it. The third eigenvector lies in the b axis. We 
find that the eigenvector: 

X(,~2) coincides with x~ °) (b axis) and 
x(23) coincides with x~ °), but that 
x(21) differs completely from x] °). 

As we have seen, the optimal boundary is determined 
by x~2 °) and x~3 °). Since ( 2 t - 1 ) = e ,  is the dilatational 
distortion, the optimum boundary is determined here 

by the two eigenvectors (of the optimal transformation 
A(opt)) with the two smaller of the three 18,1 values. 
Hence, the boundary lies, as is to be expected, in the 
plane of minimum distortion. 

Discussion and conclusions 

On the basis of the O-lattice theory and the geometri- 
cal parameters PI(I= 1,2, 3) which, to a first approxi- 

Albite average  C o m p a r i s o n  of the or ienta t ions  Pericl ine average  

x~ o) 

I 

,, 
I I 

I I 

I I 

I I I ~ x~°) 

x~O) - x~o) 

x~, o) 

-.=---A,P 

..L [ 60~'] J. [ 801] 

400A 
I I 

II I 

I 
I 
I 
I 
I 
I 
I 
I 

Fig.6. Comparison of the optimum O-lattices for the albite and the pericline average. The calculated orientations A(albite), 
P(pericline) are compared with the measured ones. 

,o" 

c ~  H P 

5 

Fig. 7. Relative orientations of the unit cell for the albite optimum and comparison of the measured and calculated eigenvectors 
and boundary orientations. A, measured eigenvector [3,0,1]. B, calculated eigenvector [2.56,0,1]. C, measured eigenvector 
[1,0,6]. D, calculated eigenvector [1,0,11.8]. E, measured boundary normal (6,0,T). F, measured boundary normal (8,0,i'). 
G, calculated boundary normal (12.6,0,T). H, calculated direction of the boundary [1,0,11.8]. 
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mation, are a measure of the surface energy of the 
boundary, the following results have been found for 
the two systems under consideration: 

1. On adapting the monoclinic and the triclinic sys- 
tem, two optimal relative orientations of the two 
lattices exist. The corresponding O-lattices are near- 
ly line lattices ( I I - A - I I ~ 0 ) .  The orientations of 
the optimum boundaries are far off the measured 
values. 

2. A triclinic structure can be transformed to an 
averaged monoclinic structure by periodic twinning. 
The twin law may be either the albite or the peri- 
cline law. For each case there exists only one opti- 
mal boundary and this lies in an orientation close 
to the measured one (deviations ~ 5 °). The param- 
eter P1 is about 8 times lower than for the mono- 
clinic-triclinic adaptation. 

A comparison between the unit vectors of the O- 
lattice and the eigenvectors of the optimal transforma- 
tion shows that the optimal boundary is determined by 
those two eigenvectors of the three which have the 
smaller dilatations. The fact that the orientation of the 
calculated boundary deviates from the measured one 
is due to the choice of the lattice constants of the two 
phases. A slight change in this choice could make the 
orientation fit exactly. Also a change of the parameters 
PI  would influence the choice of the optimum. 

On the basis of the geometrical parameters PI  the 
twinned case is strongly favoured. On the other hand 
the formation of the twin boundaries increases the 
energy content of the material but (as the existence of 
the twinning as seen in Fig. 1 suggests) less than the 
decrease in phase boundary energy. The deviation of 
the triclinic lattice from the monoclinic is only about 
4 ° , so that the twin boundary energy will be small. 

The difference between the values for albite and for 
pericline twinning does not appear to be significant. 
Fig. 1 shows albite twinning while in our calculations a 
pericline twinning would be favoured and was found 
occasionally (see under The Mineralogical Problem). 
However, the orientation of the twin boundaries within 
the lamellae of the two-phase system plays a part and 
here the albite twinning is favoured as the twin bound- 
ary is perpendicular to the phase boundary, so that the 
twin boundary surface is minimized. This is not the 
case for pericline twinning. 

An idea can be obtained about the sensitivity of the 
method from the fact that the difference between the 
albite and the pericline twinning induces a change of 
the b axes of 0.28% while the corresponding x(z °) values 
differ by 15%. The closer the two phases, the more sen- 
sitive is the calculation. 

The theory applied here consists of two distinct 
parts. The first part is the determination of the O- 
lattice. For every orientation of the two crystals (i.e. for 
every point in the (p-space of Fig. 4) an O-lattice exists. 
The second part is the attribution of a 'measure' to 
the possible boundaries of the available O-lattices. In 

our case this is the attribution of the geometrical par- 
ameters PI. These parameters where kept as simple as 
possible. No splitting of dislocations into partials nor 
differences between edge- and screw-orientation were 
taken into account. A choice of another criterion might 
lead to other optimum points, i.e. to other O-lattices 
taken from the whole set which might then be judged 
the best. 

It is to be stressed that all the results of this study 
were obtained exclusively from the six lattice constants 
of each of the two structures. No other numerical data 
were used, neither physical constants such as the 
elastic modulus nor atomic forces nor yet atomic coor- 
dinates. This means that the results are independent of 
such constants and that the same results would also be 
obtained if the given unit cells were filled with atoms 
in a completely different way. 

The authors would like to express their thanks to 
Professors F. Laves and H. Nowotny for very in- 
spiring discussions, Dr A. J. Perry for correcting the 
English, Miss S. K6ppe for the execution of the draw- 
ings and the Battelle Institute for financing this work. 
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Kinematical Diffraction from Solid Solutions with Short Range Order and Size Effect 
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(Received 19 December 1967) 

A new approach to the kinematical theory has been developed for the case of binary alloy solid solu- 
tions with short-range ordering of the atoms and displacements of the atoms from the average lattice 
sites due to departures of the effective atomic radii from the average for the alloy. Both the pseudo- 
temperature factor on the Bragg reflexions and the diffuse scattering intensity are shown to depend on 
summations over higher-order correlation parameters, defined in terms of the probabilities that groups 
of three, four or more sites should be occupied in specific ways. Expressions involving these parameters, 
and the usual short-range order parameters, ei, are derived with terms of up to the second order in the 
displacement parameters for the Huang scattering around the fundamental Bragg reflexions, for the short- 
range order diffuse peaks, and for additional diffuse scattering depending on higher-order correlation 
parameters only. Special cases of practical significance are explored, and some estimates are made of 
the relative magnitudes of the terms not included in previous treatments of this problem. 

Introduction 

The usual treatment of the diffraction of X-rays, or of 
electrons or neutrons, by binary alloy solid solutions 
involves the kinematical or single-scattering approx- 
imation. The complications resulting from dynamical 
interactions of diffracted beams are treated elsewhere 
(Fisher, 1965; Cowley 1966; Cowley & Murray, 1968). 
The initial kinematical treatments (see e.g. Cowley, 
1950) involved the assumption that the atoms were 
placed on the lattice points of a periodic space lattice. 
The fundamental reflexions that are given by both the 
fully ordered and completely disordered states were 
then found to be independent of the state of order. 
The intensities of the diffuse scattering due to short- 
range order (s.r.o.), or of the superlattice peaks given 
by alloys with partial long-range order, could be ex- 
pressed in terms of Fourier series with the Warren 
s.r.o, parameters, ai, (Cowley, 1950, 1965) as coef- 
ficients. 

The modulation of the diffuse scattering arising 
from the static displacements of atoms which result 
from the differences in atomic sizes was first observed 
by Roberts (1954). Warren, Averbach & Roberts (1951) 
modified the diffraction theory by the inclusion of 
size-effect coefficients, fli, which were dependent on 
the ai and contributed an anti-symmetrical part to the 
s.r.o, diffuse peaks. 

Later Borie (1957, 1959) gave a more complete ac- 
count of the size effect, based on a treatment due to 
Huang (1947) of scattering from atomic displacements 
associated with point defects. Borie predicted four 
effects; the reduction of the intensity of fundamental 
reflexions by the equivalent of a temperature factor, 
the broadening of outer s.r.o, diffuse peaks, size-effect 
modulation and displacement of the s.r.o, diffuse peaks, 
and a Huang diffuse scattering around the fundamental 
peaks. Related results have been reported by Krivoglaz 
(1958), Krivoglaz & Tikhonova (1960), and by Smirnov 
& Tikhonova (1960). 

While Boric showed that his predictions were in 
fair agreement with experimental observations, his 
treatment was based on some rather severe approxima- 
tions. In dealing with the Huang scattering for example, 
he dealt only with the limiting case of a small degree 
of s.r.o. While this proved sufficient for a first compari- 
son with experiment, and established the general form 
of the diffuse scattering, it is probably an insufficient 
basis for the deriving of the more accurate values for 
s.r.o, and size-effect coefficients which may be required, 
for example, for comparisons with the theoretical 
results of Clapp & Moss (1966, 1968). 

In discussing the limitations of his treatment, Boric 
(1957) points out that a more complete account of the 
scattering would involve correlation coefficients of 
higher order than the usual s.r.o, parameters which 


